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The third-difference approach to nodified Allan variance
(MVAR) |leads to a tractable fornula for a measure of MWAR
estimator confidence, the equival ent degrees of freedom (edf), in
the presence of power-law phase noi se. he effect of estimation
stride on edf is tabulated. A siqPIe apProxination for edf is
given, and its errors are tabulated. A theorem allow ng
conservative estimates of edf in the presence of conpound noise
processes is given.

Introduction-

The ingredients for this work were presented three years ago
at this Synposium The first ingredient, a paper by the present
aut hor [6] , shows how the | abor of conmputing modified Allan
variance (MVAR) estimates can be reduced by expressing MVAR in
terms of third differences of the cunmulative sumof tine
residuals. This approach shows that an MWAR estinmate is hardly
more difficult to conpute than a conventional Al lan variance
(AVAR) estimate. A review of the method is given below.  The
second ingredient is a paper by Kasdin and Walter [10] on
simulating a class of discrete-time power-law noises. In a
subsequent paper [12], Walter exploits these noise nodels to
derive a fornmula for the variance of a fully overlapped MWAR
estimator. Conbined with a fornula for the estimtor nean (MVAR
itselfy , this fornmula can be used for conputing an esti mator
confidence nmeasure, the equivalent dedgrees of freedom (edf,
defined” below) . In turn, edf can be used for assigning
confidence intervals. _

Walter’'s expression is difficult to evaluate. Happily, the
conbi nation of Walter’s nodels with the third-difference approach
has led to another formula for edf, mathematically equivalent to
Walter's fornmula, but easier to evaluate because 1t has fewer
sunmation terms. This forrmula is given below, together with
additional results as follows.

~ «An assessnent of the dependence of the ear of an MVAR
estimator on its estimation period 7, , defined as the tine

i nterval by whi ch the summands of the estimator are shifted. It
turns out that a wide range of choices of 7, gives essentially




the sane edf. The user can choose Ty from considerations of

conveni ence and conputational effort.

«A sinple approximation fornmula for edf, Wwth coefficients
drawn from a brief |ookup table. Most users will not need the
exact edf formul a.

A theoremthat allows one to calculate conservative val ues
of estimator edf in the presence of a polynom al phase noise
spectrum i.e. , linear conbinations of power laws with unknown
coefficients. This theoremis also valid for AVAR estinators,
but is nore useful for MVAR estimtors because their edf varies
less with power-law noise exponent.

The nost critical assunption underlying these results is a
negligible rate of linear frequency drift, or a drift rate that
IS known a priori; in this case, it can be renoved fromthe data.

This paper nmainly gives results; a |onger paper with nore
derivations [7] has been submtted el sewhere.

MVAR and Its Estimators

Third-Di fference Fornul ation

Let x,, X, . ., with sanple period 7,0 be @ sequence of

time residuals obtained froma conparison of clocks or froma
phase conparison of two frequency sources. The conventiona

Allan variance for an averaging time 7=m7  is defined by
2 _ 1 2. .2
Uy(’f) = —2‘55 E[Amxn] / (1)

where E denotes mathematical expectation (ensenble average) , and
Am is the backward difference operator with step m that is,

%% = fn R

for any sequence f..

For the nodified allan variance, define the noving averages
of x,by

m-1

_ = 1
xn(m) szn—j’

J=0

‘1" he conventional definition of MAR is



2 S S 2
mod Uy(T) =3 E[Amxn(m)} : (2)

The third-difference fornulation of Mvar uses an auxiliary
sequence w_ of cumulative sums of X, defined by

n
0 o0m ¢ X g
:]:

This sequence can be generated fromthe recurrence w_
X,. Cbserve that

n

1
=
+

i{n(m)=—£\w n 2 n.

Wien this is substituted into (2), the difference operators
multiply to gl ve

2 _ 21 3.7 2
mod (Ty(T) = —2 T_zmz E[’imw
(4)
= 1 E[ w_ - 3w + 3w W ]2
2. 2 n n-m n—-2n n-3m| -
27Tmnm

This is the third-difference form of MVAR  The. advantage of (4)
over (2) is that it expresses WAR in terns of four values of w_

i nstead of 3m val ues of X.

WAR Estimator with Stride

To estimate WAR with [imted data, we replace the E
operator in (4) by a finite average over n. or such a time
average, we have to decide how nuch to increase n fromone term
to the next. This increase, denoted here by L is called the

estimation stride. The corresponding tinme shift TIEM T, i's
called the estinmation period. Wen computing AVAR from (1) , it
is customary to use m; = 1, called “full overlap”, or m; = m
called "7 overlap”. The effect of these choices on AVAR
estimator confidence has previously been conputed ([5] and
references therein) . In the context of MVAR the overlap

formal i sm beconmes awkward, and is replaced here by the stride
formalism  The existing literature on MWAR ([1], for exanple)
customarily assunes” a stride of 1 (with good reason, as we shall

see later) . Here, we shall allow m, to vary between 1 and m and

investigate the effect on the confidence of the resulting
estimator.



Suppose that N tine residuals X4 X, . . , x,are available.

N
From t hese conme N+1 cunul ative suns Wor W W, and N-3m+1

1’ L
sanpl es of A;wn,3m <n <N Let M be the nunber of sanples of

A;wn that are separated by the stride m, - Then
N - 3m+m
M=int ————21, (5)
m
L 1

wher e fnt(x) is the greatest integer that is < x. The WAR
estimator 'to be studieda iS given by

M1
1 3 2
Ve 1 Aw ] . (6)
2 szzM kz:::L)m‘:nHkml

Equi val ent Deqrees of Freedom

~ One neasure of the statistical confidence of an estimator X
Is its equivalent dearees of freedom (edf) , defined by

2

_ 2(EX
edf X = S5, (7)

H gher val ues of edf nean that the distribution of X is nore
concentrated about its nean. I[f X is distributed as a constant
mul tiple of a chi-squared random variable wth » degrees of
freedom then edf X = v. Even if X dces not have such a

distribution, eaf X can still serve as a convenient dinmensionless
measure of the confidence of X as an estimator of its nmean. In
this case, edf X need not be an integer. | take this point of

view wth regard to V, not having studied the nature of its

di stribution under the noise nodels discussed below. In
frequency-stabili%g analysis, it is customary to assune that
estimators of AVAR or AR obey an aPproxinate chi-squared | aw,
and, on this basis, to construct confidence intervals for AVAR or
MVAR [9][15) fromlevels of the appropriate chi-squared
distribution function.

Noi se Mbdel s

The statistical properties of V, its edf in particular,
depend on the random process chosen to nodel the time residuals
X,. The classical continuous-time spectral nodel for phase or

time deviations is a linear conbination of power |aws:




0
sp(f) = Y. g4 £, (8)
A4

whose conponents, for g =0,-1,-2,-3,-4, are called white phase,
flicker phase, white frequency, flicker frequency, and random-
wal k frequency. (The plus sign indicates one-sided spectra
density.) It is understood that there is sone high-frequency
cutoff | the "hardware bandw dth”, and that the power-|aw

conmponents of (8) mght only behave asymptotically |ike F0 as £
0. Bernier [2] studied the behavior of MWAR for each of these
spectral components, tackling the conplex interaction anong the
hardware bandw dth B, the sanple period 7,, and the averagi ng

time t.Here, we follow Walter [12] in usin%]explicit discrete-
time power-law nodels for the sanples X of the time residual

process. These are the so-called fractional-difference Processes
[3][8], which have one-sided spectral densities proportional to

Sy (f) = 2[2 sin(wfro)]é e (9)

Noni nt egral values of g are allowed. _

There are two reasons for using these nodels here. First,
t he abovenentioned conplications of sanpling the continous-tine
model s are avoi ded. Second, the nodels fit perfectly into the
MAR third-difference framework. In particular, the sequence W

defined by (3) is also a fractional-difference process with
exponent pg-2, that is,
S;(f) = 2[2 sin(wfro)]ﬂ'z. (10)

Now, since MVAR has been given in terns of wn,there IS no need
to use x_ in the theory.

Cenerali zed Autocovari ance

The frequency-domai n description (10) of the nodel for W

has an equi val ent time-domain description, called the generalized
aut ocovari ance (Gacv) and denoted by R (n) where n runs through

all integers, positive and negative. The concept of

aut ocovariance (acv) as a function of one tinme variable applies
to stationary processes only. Wth sone care, though, it can be
extended to certain nonstationarg processes in such a way that
their covariance properties can be described in ternms of a
function, the cacv, that still depends on one tine variable.

Al t hough the GACV cannot be regarded as a covariance function in




the usual sense, it can be used |ike one under certain
restrictions.

Because the GACV R(n) plays a central role in the fornula

for edaf V given below, we give this function here for all the
required values of B, namely -4 < < 0. Bear in mnd that the
noi se-type |abel applies to X, a power-law process w th exponent

g, while R,(n) applies to a power-|aw process W W th exponent
B-2. For the flicker noises we need an auxiliary sequence L, a
di screte version of the logarithm defined by

n
-— — 1 ——
Lo = 0 Dy = :z: - 1ij2°
j::]
Following are the required GACV fornmul as.

B-O white phase nl
— =n
R, () = - 27,

g = -1, flicker phase
et 2
U I
g = -2; white frequency

2
_ =Inj(a - n%)
Ry, (m) = J 177

g = -3; flicker frequencv_1
Rw(n) = E‘Iﬁ—(—;‘[% - nz] {g‘ - nz]Llnl
g = -4, randomwal k frequency
_ -Inl(a - n")(a - n%)

R, (n) 2407,

g noni nt egr al
-I'(1-8/2+4n)
R, (n) =

274 cos(nB/2) T'(2-p) I'(B/2+n)

The fornmula” for nonintegral g is equivalent to the form used by
Kasdin and Walter [10] and by Walter [12], but for the GACV of

X not of w.

Addi ti onal Mathematical Assunptions

~ For .technical correctness, it is assumed that the the tine
residual s X have stationary, Gaussian, nean-zero second

increnments. Assuming that these increnents have zero nean is the
sane as assuming that the frequency drift rate is zero.
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Resul ts

WAR Esti mator edf: Exact Formula

In the estimator defined by (5) and (6), recall that the

averaging time is m7,, and that the estimation period is m, Ty
For nonnegative integers n, |et
R, = -R_ (n-3m) + €R_(n-2m)
- 15Rw(n-m) + 20Rw(n) - 15Rw(n-+m)
+ 6Rw(n+2m) - Rw(n+3m). (11)
| n other words, = —5$Rw(n), wher e 6#3is the sixth centra

difference operator with step m Actually, R/is just the

ordinary ACV of the stationary process Aﬁyh“ Let

Pn R’

the corresponding autocorrelation sequence. The fornula for edf
V is given by

M-1
arv-wr e[ - g]pfmn “ (12)
k=0

This formula is mathematically equivalent to Walter’s fornula for
var V ([12], eq (32)) , but requires less conputation. Evaluation
of (12) requires 7M eval uations of R, (n). Valter’'s formula

which is given only for m, = 1, is a double sum requiring

5(2m-1) (2M-1) eval uations of the GACV of X. “1"his shows the

advantage of the third-difference approach, which derives MVAR
estimator sunmands from four val ues of W i nstead of from 3m

val ues of x_.
n

| N connection With a recent conference paper [15], tables of
edf V for m, = 1 and integral B were generated by the nethod

given here, by Walter’'s nethod, and by Mnte Carlo sinulation
The two theoretical methods agreed within 0.1 percent; the
sinmulations agreed with the theoretical results within a few
percent.



A note on computation: The ACV R tends to zero as n - cp,
yet is obtained from differences of R, (n) which tends to 01 with

n. Cearly, one should use double precision for evaluating (11).
Even so, the conputed values of R can deteriorate for large n,

especially for nonintegral g, where Rw(n)involves I' functions.

| was able to cure this problem by replacing the upper limt M1
of the summation in (12) by K-1, where K = min(M,10m/m,). (In

all actual conputations, m'm is assuned to be an integer. )

Ef fect of Estinmation Period

From ‘here on, we assume that the estimation period divides
evenly into the averaging tinme, that is, we have

-T m

—_— = T == ]' ’

‘1 1

where r is an integer. Under this assunption, (12) was used to
generate tables of edaf V for conmbinations of N, m and m . For

each conbi nation, the nunber Mof estinmator summands is
calculated from (5) , and the paraneter p is defined by

p=1=-F- (13)

A selection of edaf values is shown in Table 1 for integral values
of g. Values for half-integral B were also conputed, but are not
shown; as expected, they interpolate the given val ues. For now,

ignore the "s" rows, and observe how edf depends on r (or m,) for

N = 1024, m fixed. For each B, and for m2 4, it is clear that
any value of r between 4 and m gives a value of edf that is
nearly maximal for that mand 8. If m< 4, then we should take

Ty =7y (my =1, r=m). For f2-2, an estimation period of 7

(my=m r = 1) gives inferior results. Here is an enpirical
result that sunmarizes the observations.

Assume an averaging tine 7 at nDSt 1/4th the duration of the

time-deviation record. For each power |aw between white phase
and random-walk frequency, any estimation pericd 7, between 7,

and max (7, 7/4) that divides evenly. into 7 gives an MVAR

estimator V whose edf is within 8 percent of the maxi mal value
for 7-.

Table 1 shows that the variation of edf V with r is greatest
for white phase (8 = O. Aso, we see that p itself iS a rough




estimate of edf V, especially for m
my < max(1,m/4).
The choice of estimation period 7, mght depend on a

tradeof f between convenience and conputational effort. For snall
data sets that are held entirely in nenory, the mnimal choice m

= 1 is convenient, and the conputational cost is probably
negllglble. For larger data sets that. are read sequentially from
a

ile, the maximal choice m, = m 4 allows sequentia
accunul ati on of MVAR suns from the stream of W w th noderate use

of menory. As an exanple, take m = 32, m1=8. To update the

sum of squares of Agzwn at every eighth sanple of wn,the program
has to renenber the previous 12 val ues of Wg - Alternatively, if
there are many thousand data points, one can simply use m, mto

accunul ate suns of squares of third differences for smaller
values of m while collecting a global buffer of W subsanpl ed by

sone factor m, . After all the data are read, the buffer is used
for calculating MWAR estimates with mo=m, M= rm for various
r.

, in t he recomended range 1 <

1

1

MVAR Esti mat or edf: Approximte Fornula

Because the power-law nodels are only an approximate fit to
actual phase noise, the precision of the theoretical values of
edf Vin Table 1, four significant figures, is meaningless for a
user who needs to construct error bars for MAR neasurenents.

Therefore, the follow ng sinple approximtion is offered as an
enpirical result.

Assunme power -l aw phase noise with exponent 8 bhetween -4
(randomwal kK frequency) and O (white phase) , at least 16 time-
residual points, an averaging tine 7 at nbst 1/5th the duration
of the neasurenent, and an estimation period Ty bet ween 7, and

max(70,7)4) that divides evenly into r. In our notation, N> 16,
m< N/5, and m = rm,, where r is an integer between min(m,4) and
m For the estimator V defined by (6) , we have

a
edf V8% ——a— (14)

where p = Mr, M is given by (5), and the coefficients ag, a

functions of mand 3, are drawn from Table. 2.

The relative error of this approximation is observed to be
at nost +11.1 percent.

as
1




Each "s» row in Table 1 shows the percentage errors of (14)
for the row above. The table entries were chosen to represent the
full range of. observed errors. This approximtion holds only
under the above restrictions on data set size and averaging tine.
Fordexanple, if m= N4 then the exact eaf fornmula (12) nust be
used.

Thi s approxi mation was derived fromtwo rigorous |ower bound
formulas, one for edf V, the other for the edf of a continuous-
tinme analog of V. The choice between these two bounds as
approxi mations was made partly by insight, partly by trial and
error.

compound Noi se Spectra

The foregoing results assune a power-law phase noi se
spectrum proportional to (9) for sone fixed exponent 4. [f that
were indeed the case, our statistical efforts ought to be
directed-toward estimating the two-paraneter set consisting of 2
and the constant of proportionality. Instead, as usual, we find
oursel ves using paranetric tools to evaluate the confidence of a
nonparametric statistic. The value of edf V depends on 4. Wat
can we do in the presence of a conpound phase noi se nodel

S;(f) = :z:gﬂ sinﬂ(zwaO), (15)

a finite sum of fractional-difference spectra? Sone help is
given by the follow ng theorem which, although weak and perhaps
obvious, 1is better than not hing.

Theorem Let the phase noise be a finite sum of jindependent
component nojses with stationary Gaussian mean-zero second
increments. Forman WAR estinmator V fromthe given phase noi
and corresponding estimators V., from the componentslhen

edf V 2 nLn edf V..

In other words, we never do worse than the worst conponent.

To apply this theoremto the situation (15), assune that the
conponent g values are all in sone subinterval of [-4,0] (the
whol e range, perhaps) . Use (14) and Table 2 to conpute edf Vﬂ

for each “tabulated g in the subinterval, and take the small est
val ue as a conservative estimate of edaf V. For exanple, if one
bel i eves that the noise has conponents between white phase and
flicker phase, perhaps fromprior know edge, perhaps froma log-
log o-7 plot with slopes between -3/2 and -1, then one can
mnimze (14) over the first three rows of Table 2.

_ This theorem can be generalized to AVAR estinmators and ot her
situations involving averages of the square of a stationary
Gaussi an nean-zero process. Its usefulness for MWAR, as opposed
to AVAR is enhanced by the relatively weak dependence of MAR
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estimator edf on B, as can be seen in Table 1. Simlar tables
for fully overlapped AVAR estimators [5][11] show a shar per
dependence on B, especially for large 7/7,. Thus , mnimzing

estimator edf over B causes a smaller |oss of accuracy for MWAR
than for AVAR

Concluding Remarks; Future Work

The previous paper on the third-difference approach [6]
showed that MVAR estimates are al nost as easy to calcul ate as
AVAR estimates. The results given here extend this conclusion to
the exact fornmulas for the confidence of the estimators. In
addition, the approxi mation fornulas for MVAR confidence are
sinmpler and nore uniformthan existing approxi mation fornulas for
AVAR confidence [5][9], and the confidence val ues are nore robust
to spectral uncertainties. Having overcome the apparent increase
in conplexity of the extra noving-average filter in WAR we are
free to enjo% all its advantages.

The problem of frequency drift renoval now needs to be
addressed. For AVAR, it is known that estinmation of drift rate
fromthe. data thenselves, and renoval therefrom causes negative
estimator bias that worsens as averaging tine 7increases. The
use of three-point [13] [14] or four-point [4] drift estinmators,
whi ch extract a quadratic conponent of the time-residual sequence
X, sinmplifies the calculation of the nean and variance of AVAR

estimators with drift removed. 1 have no doubt that simlar

cal culations for MVAR estimators can be nmade by using four-point
drift estimators that extract a cubic conponent of the

cunmul ati ve-sum sequence Ww,.

The work described in this Paper was performed by the Jet

Propul sion Laboratory, California Institute of Technol ogy, under
a contract with the National Aeronautics and Space

Admi ni strati on.
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Tabl e 1.

N = 1024 Jé)
m r ‘1 M =) 0.0 -).0 -2.0 3.0 -4.0
L 1 1 1022 1022. 525.9 589.3 681.6 828.6 1022,
+0. 0 +0.0 +0. 0 +0. 0 +0. 0
2 1 2 510 s510.0 262.6 310.1 380.8 459.1 432.3
2 11019 509.5 477.0 496.5 515.2 523.6 441.4
. -0.1 -0.1 -0.1 -0.1 -0.1
3 1 3 339 339.0 174.6 210.3 260.1 304.4 271.0
3 1 1016 338.7 373.9 349.9 341.5 334.6 274.0
+11.1 -2.8 -3.9 -4.1 -5.0
16 1 16 62 62.00 32.15 39.57 48.69 55.29 47.55
2 8 123 61.50 58.06 59.26 59.68 58.73 47.60
4 4 245 61.25 72.74 61.99 59.93 58.57 47.43
+4 .1 +0.1  -0.2 -0.3 -0.2
8 2 489 61.13 77.60 62.26 59.84 58.46 47.33
-2.6 -0.6 -0.2 -0.3 -0.2
16 1 977 61.06 78.88 62.26 59.78 58.40 47.29
-4.3 -0.7 -0.2 -0.3 -0.2
128 1 128 6 6.000 3.375 4.061 4.909 5.552 4.766
2 64 11 5.500 5.754 5.841 5.857 5.716 4.535
4 32 21 5.250 7.005 +s5.922 5.706 5.525 4.367
+3 .4 +0.4 -0.1 -2.3 +0. 2
8 16 41 5.125 7.354 5.840 5.599 5.417 4.277
-3.6 -0.3 -0.3 -2.5 +0. 0
16 8 81 5.063 7.410 5.7/84 5.542 5.361 4.231
-5.3 -0.4 -0. 4 -2.6 +0. 0
. 32 4 161 5.031 7.405 5.-/55 5.513 5.332 4.207
-5.8 -0.4 -0. 4 -2.6 +0. 0
64 2 321 5.016 7.394 5.739 5.498 5.318 4.196
-5.9 -0. 4 -0.4 -2.6 +0. 0
128 1 641 5.008 7.386 5.732 5.491 5.311 4.190
-5.9 0.4 -0.4 -2.6 +0. 0

N =16

1 1 1 14 14.00 7.475 8.327 9.561. 11.51 14.00
-3.7 -3.1 -2.4 -1.4 +0.0
2 2 1 11 5.500 5.754 5.946 6.117 6.146 5.061
-10.6 -10.0 -9.2 -8.1 -5.9
3 3 1 8 2.667 3.815 3.526 3.386 3.224 2.508
+9.9 -2.0 -3.0 -7.2 -3.5
noise type: Wwh ph fl ph Wh fr f1 fr rwfr
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‘Table 2. “Coefficients for Approxi mating MWAR Estinator edf

m .
noi se 1 2 >2
type A a. al a. al a. al
wh ph 0.0 .51429 O .93506 0 1.2245 .58929
-0".5 .54277 . 95407 1.0739 59605
f1 ph -1.0 .57640 . 97339 1.0030 .60163
-1.5 .61688 . 99246 977732 . 59769
wh fr -2.0 .66667 1.0101 .96774 . 57124
-2.5 .72948 1.023-7 .96102 . 50974
f£1 fr -3.0 .81057 1. 0266 . 94663 . 41643
-3.5 .91389 199981 .90604 . 34276
rwfr -4.0 1.0000 . 86580 . 76791 . 41115
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